Search results for "Hierarchical learning automata"

showing 2 items of 2 documents

The Hierarchical Continuous Pursuit Learning Automation: A Novel Scheme for Environments With Large Numbers of Actions.

2019

Although the field of learning automata (LA) has made significant progress in the past four decades, the LA-based methods to tackle problems involving environments with a large number of actions is, in reality, relatively unresolved. The extension of the traditional LA to problems within this domain cannot be easily established when the number of actions is very large. This is because the dimensionality of the action probability vector is correspondingly large, and so, most components of the vector will soon have values that are smaller than the machine accuracy permits, implying that they will never be chosen . This paper presents a solution that extends the continuous pursuit paradigm to …

Theoretical computer scienceHierarchical learning automataHierarchy (mathematics)DiscretizationLearning automataComputer Networks and CommunicationsComputer scienceLarge action numbersPursuit learning automata02 engineering and technologyVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420Probability vectorLearning automataComputer Science ApplicationsAutomatonOperator (computer programming)Artificial Intelligence0202 electrical engineering electronic engineering information engineeringBenchmark (computing)Estimator-based learning automata020201 artificial intelligence & image processingVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550SoftwareCurse of dimensionalityIEEE transactions on neural networks and learning systems
researchProduct

The Hierarchical Continuous Pursuit Learning Automation for Large Numbers of Actions

2018

Part 10: Learning - Intelligence; International audience; Although the field of Learning Automata (LA) has made significant progress in the last four decades, the LA-based methods to tackle problems involving environments with a large number of actions are, in reality, relatively unresolved. The extension of the traditional LA (fixed structure, variable structure, discretized, and pursuit) to problems within this domain cannot be easily established when the number of actions is very large. This is because the dimensionality of the action probability vector is correspondingly large, and consequently, most components of the vector will, after a relatively short time, have values that are smal…

Theoretical computer scienceHierarchical learning automataHierarchy (mathematics)Learning automataComputer sciencePursuit learning automataPursuit LALearning Automata02 engineering and technologyEstimator-based LAProbability vectorField (computer science)020202 computer hardware & architectureLA with large number of actionsVariable (computer science)Operator (computer programming)Learning Automata (LA)Action (philosophy)0202 electrical engineering electronic engineering information engineeringEstimator-based learning automata[INFO]Computer Science [cs]020201 artificial intelligence & image processingHierarchical LACurse of dimensionality
researchProduct